Integration of Twisted Poisson Structures

نویسندگان

  • ALBERTO S. CATTANEO
  • PING XU
  • P. XU
چکیده

Poisson manifolds may be regarded as the infinitesimal form of symplectic groupoids. Twisted Poisson manifolds considered by Ševera and Weinstein [14] are a natural generalization of the former which also arises in string theory. In this note it is proved that twisted Poisson manifolds are in bijection with a (possibly singular) twisted version of symplectic groupoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Geometry with a 3-form Background

We study a modification of Poisson geometry by a closed 3-form. Just as for ordinary Poisson structures, these “twisted” Poisson structures are conveniently described as Dirac structures in suitable Courant algebroids. The additive group of 2-forms acts on twisted Poisson structures and permits them to be seen as glued from ordinary Poisson structures defined on local patches. We conclude with ...

متن کامل

Poisson geometry and Morita equivalence

2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...

متن کامل

On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds

In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proo...

متن کامل

Formal Poisson Cohomology of Twisted r–Matrix Induced Structures

Quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an r-matrix induced structure twisted by a (small) compatible exact quadratic tensor. An appropriate bigrading of the space of formal Poisson cochains then leads to a vertically positive double complex. The associated spectral sequence allows to compute the Poisson-Lichnerowicz cohomology of the considered tensors. W...

متن کامل

Poisson algebras and Yang-Baxter equations

We connect generalizations of Poisson algebras with the classical and associative Yang-Baxter equations. In particular, we prove that solutions of the classical Yang-Baxter equation on a vector space V are equivalent to “twisted” Poisson algebra structures on the tensor algebra TV . Here, “twisted” refers to working in the category of graded vector spaces equipped with Sn actions in degree n. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003